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Abstract. It is known that the standard method for calculating finite-size correc- 
tions in Bethe ansatz solvable systems is not applicable to the Takhtajan-Babqjian 
model and its anisotropic X X Z  generalisation. We develop a new analytic method 
explicitly avoiding root densities and associated problems. Nonlinear integral equa- 
tions are derived whose solutions yield the correct central charges c = 1 and c = 
for the spin-t and spin-1 X X Z  chains, respectively. In the spin-1 c a e  we obtain 
as a by-product the finite-size deviation of the Bethe ansatz roots from the 2-string 
formation. 

There has been a recent growth of interest in calculating finite-size corrections in ex- 
actly solvable two-dimensional statistical mechanics models and their related quantum 
spin chains. One motivation is that at  criticality such corrections are known to char- 
acterise an underlying conformal field theory (for a review, see e.g. [l]). In particular, 
for periodic boundary conditions, the leading finite-size correction to the ground state 
energy E, of the spin chain is related [2,3] to the central charge c: 

E, N Ne,, - nCc/GN 

where N is the system size and C is a scale factor [4]. 
For models solvable via the Bethe ansatz, de Vega and Woynarovich have given 

a systematic procedure for calculating finite-size corrections [5]. This method, based 
on manipulations of root densities, has since been extended and applied to a number 
of models to derive c and various scaling dimensions (see e.g. [6,7] and references 
therein). 

On the other hand, for quantum spin chains c can also be obtained from the 
low-temperature heat capacity [3]. In this way, Affleck obtained the value 

3s 
s + l  

c =  - 

for the integrable spin-s Takhtajan-Babujian (TB) model [8,9]. However, the nature of 
the complex string solutions to the Bethe ansatz equations for E, has so far prevented 
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a derivation of this result via (1). Nevertheless, the Bethe ansatz equations can still 
be solved numerically for relatively large N and small values of s [lo-131. In each case 
the estimates for c are in agreement with (2). More recently de Vega and Woynarovich 
have succeeded in deriving the finit,e-size behaviour of the roots [14]. 

In this letter we develop a different approach for calculating finite-size corrections, 
explicitly avoiding root densities. Our first goal has been to  obtain the result (2) for 
the TB model. Here we present our results for the spin-1 case. In order to  set the 
notation and for later comparison, we begin with a treatment of the spin-4 XXZ 
chain. 

The Hamiltonian H of the more general spin-s XXZ chain (the TB model follows 
from H in the isotropic limit) and the momentum operator P can be expressed in 
terms of the transfer matrix T(u)  of the related (2s + 1)-state vertex model (see e.g. 
[15-161) a~ 

H = constant x (lnT)’(vo) P = ilnT(v,) (3) 

where v o  is a special value of the spectral variable v .  The eigenspectrum of H can be 
obtained in terms of the eigenvalues A(.) of T ( v )  

E =constant x (lnA)’(vo) P = ilnA(vo). (4) 

The spin-4 XXZ chain is related to  the six-vertex model (see e.g. [17]). The eigen- 
values A(v) of the corresponding transfer matrix are determined from 

A(w)q(v) = @ ( U  - i0/2)q(v + Bi) + @(v + iB/2)q(v - Bi) (5) 
where 

N -  

@(v) = (sinhw)N q(v) = n s i n h ( v  - wj). 
j =  1 

Here N is the length of the chain and N -  is the number of down spins of the eigenstate. 
The unknown numbers wj are determined by the Bethe ansatz equations p ( w j )  = -1 
where p(v) is defined by 

@ ( U  - i8/2)q(v + Bi) 
@(v + i0/2)q(v - 0;) 

p(v) := ( 7 )  

In the following we restrict ourselves to  N even and also assume that 0 < 0 < ~ / 2  
which covers a part of the planar XXZ chain in the neighbourhood of the (isotropic) 
antiferromagnetic Heisenberg model. The functions q(v), @(v) and A(.) are Ti peri- 
odic: 

q(u + ni) = (-1)N/2q(v) @ ( U  + ni) = @ ( U )  A(v + Ti) = A(.). (8) 
The ground state is characterised by N -  = N/2 real numbers vj distributed symmet- 
rically about 0. We define functions &(v) and P ( v )  as 

&(v) := (2i)-N/2q(v) { cosh [: ( U -  Si) ]}”  

P(w) := {coth [i ( v -  ;i)]}”p(v) 

(9) 
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which are analytic, non-zero on the following strips and have zero logarithm in the far 
left/right limit (ANZZ) 

0 < Im(v) < ?r for &(U) 

-6' < Im(v) < 6 for P(v) .  

Due to the ANZZ property In &(U), In P ( v )  can be Fourier transformed, e.g. 

00 

lnQ(v) = /, Q(k)eiku dk 

with inverse transform 

where r is somewhere between 0 and T .  

From (7) and (8) we derive the first relation 

sinh(v - i8/2) 
= $/:ln{icoth [$ (U- i i ) ]  sinh(v + i6/2) 

cosh[(v + i8  - in/2)/2] e - iku  
X >" dv. 

cosh[(v + in/2 - iO)/2] 

A second relation is derived from the fact that h(v)  := (1 4- p(v))/2Q(v) is ANZZ in 
-6' < Im(v) < 8. Cauchy's theorem then guarantees that 

m+ai m+bi 

J -w+ai - c o + b i  
In h(v)e-iku dv = / In h(v)e-'" dv (14) 

where -6 < b < 0 < a < 6. Using (8) this last equation is equivalent to 

From (13) and (15) the functions &(k) and p(k)  can be determined in terms of 
p ( v ) .  From p ( k )  we calculate P ( v )  using p ( - v )  = l / p ( v ) ,  with the result 

' -4- l/p(w)(F(v + w )  - F ( v  - 20)) dw (16) 2 
lnP(v)  = - 

2T ' J"'"i.ln -m+h 
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where 

eiakV dk. 
sinh(n - 2B)k 

cosh Bk sinh(n - B)k 

00 

Choosing b = -B/2 and respecting the pole of F ( v )  a t  v = -Bi we find 

~ ( v - i ~ / 2 )  = exp ( Z ~ ( v ) *  + 
m+bi 

‘J (R(v - w)*F(w - if?) - R(v - w)F(w)) dw 
1 

2n - 0 o t b i  

(18) 

where we have used the abbreviation 

1 + l/p(v - iB/2) 
2 

1 + [tanh(nv/2B)lN/P(v - iB/2) 
2 

= In R(v)  := In 

This is a nonlinear integral equation for P ( v )  where N enters simply as a (real) 
pa.rameter but no longer plays the role of the number of unknown variables. 

The ground state energy of the spin-4 X X Z  chain is calculated from 

E, = -i(S/r)(ln A)’(-iB/2) (19) 

where an appropriate normalisation factor [18] was introduced to render the sound 
velocity as C = 1. Now writing E, = N e ,  + AEN, the finite-size correction AEN can 
be expressed in terms of p(v): 

To find a closed-form expression for the central charge c via ( l) ,  we introduce a new 
variable z by 

and the limiting functions 

a(.) := lim P(v  - iS/2) 
N-00 

1 + exp[-2 exp(-2z)]/a(z) 
2 ~ ( z )  := lim R(v)  = In 

N-m 

Equations (18), (21) and (22) then yield an integral equation for a ( z ) ,  
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The central charge can be calculated from the solution a(.) after performing the 
appropriate limit in (20). We find 

48 
c = ,z 1, Re (~(t) + In 2)e-'" d t .  

Up to  now we have not solved (23) analytically. The solution, however, can be found 
numerically by iteration. This yields the known value of c = 1 within an error of order 

Our alternative method for the spin-: XXZ chain may look rather complicated. 
However, one should take into consideration that even for spin-4, a thorough treatment 
of the finite-size corrections within the standard method is still involved [6]. By 
inspection, we have lim,-,t,a(z) = 1 as the asymptotic behaviour of a ( z ) .  Here 
the crude approximation a(.) 1, corresponding to Hamer's procedure [18], does not 
solve (23), but fortunately (24) gives c = 1. (A comparable approximation for the 
spin-1 chain below does not work.) 

We turn now to the spin-1 antiferromagnetic XXZ chain, i.e. to  the model of 
Zamolodchikov and Fateev [19]. Here the eigenvalues of the transfer matrix of the 
corresponding 19-vertex model are given by [15,16] 

A(v)  = L ( v ) L ( v  + 8i) - sinh(v - 8i)N sinh(v + 28i)N (25) 

and 

L ( v ) q ( v )  = @(v - 0i)q(v + 0;) + @(v + Oi)q(v - 8i) (26) 

where q(v) and @(v) are as defined in (6). The numbers vj are determined by the 
Bethe ansatz equations p(vj) = -1 where p(v) is now defined by 

@(v - Bi)q(v + Bi) 
@(v + 0i)q(v - Oi)' 

p(v) := 

For the ground state, the N -  = N roots vj are distributed symmetrically about 0 and 
are close t o  the lines Im(v) = f 0 / 2 ,  but do not lie on them exactly. We assume N 
even and 0 < 0 < x / 3 .  

In order to proceed, we define some functions Q1(v), Qz(v), Pl(v) and Pz(v) for 
which the strips of the complex plane where the ANZZ property holds are 

x + 0/2 < Im (v) < -8/2 

Pz(v) := P(V) - 0/2 < Im(v)  < 0/2. 

On similar lines as above using the ANZZ property of h,(v) := (1 + p(v))/2Qz(v) 
and h, (v )  := (1 + p ( v ) ) Q z ( v  - 0i)/2Ql(v) in -0 < Im(w) < 0 and 0 < Im(v) < 8, 
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respectively, four equations can be derived for o l ( k ) ,  Q 2 ( k ) ,  P l ( k )  and P2(k). They 
finally yield two coupled nonlinear integral equations for Pl(w) and P2(w): 

where 

R,(v) := 1 + [tanh ( ~ v / 2 0 ) ] ~  / P l ( v  - Oi) R2(v )  := 1 + P2(v)  

The ground state energy of the spin-1 XXZ chain is calculated from 

E, = -i(O/r)(lnA)'(-Oi) = N e ,  - i(O/r)(ln P2)'(0) .  (31) 

We introduce the variable c as in (21) and the limiting functions 

a(.) := lim Pl(w - ei) p(c) := lim P2(o) 

7 ( c )  := flmm R(w) = In 

N-03 N-m 

) . (32) 
1 + exp[-2exp(-2c)]/a(c) 1 + P(c) 

2 2 

Then in this limit (29) and (32) yield 

e 00 

2Y J InP(z - y) coth - ei 
+ T(n-20)  -m ( T - 2 e  

(33) 
e 

r -  2e 
+ coth - 

1 + exp[-2exp(-2c)]/a(e)* exp (: Jm Re r(" - Y) dy) 
= 1 + exp[-2 exp(-2c)j/a(e) -m sinh2y 

The solution of these integral equations gives the central charge as 

Re ( ~ ( e )  + In 2)e-'" de .  (34) 

We have not yet solved (33) analytically. The limiting behaviour, however, 

lim a ( z )  = 
2-fw (35) 
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is derived easily. From this the deviation of the Bethe ansatz roots v j  from the lines 
Im(v)  = f 8 / 2  can be derived as 

In2 i 
Avj = f- - 

4 a  Na(w)  

where U(.) is the root density. This result is in agreement with the findings of [14]. 
The  integral equations (33) can be solved numerically by iteration. In this way we 

have obtained the result c = $ for 8 = O,O.la, n/6, 0 . 2 ~  and 0 . 3 ~  with an  error of order 
In fact the spin-1 result is expected to  hold in the wider range 0 < 0 < a / 2  [20], 

as is borne out by the numerical results [21,22]. A detailed derivation of our results, 
along with their extension t o  spin-s, will be published elsewhere. 

This work was begun while one of the authors (AK) was a visitor a t  the Centre for 
Mathematical Analysis. He thanks the Centre for financial support during his stay 
and the Deutsche Forschungsgemeinschaft for a travel grant. The work of MTB has 
been supported by the Australian Research Council. 
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