An analytic treatment of finite-size corrections in the spin-1 antiferromagnetic XXZ chain

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1990 J. Phys. A: Math. Gen. 23 L189
(http://iopscience.iop.org/0305-4470/23/5/002)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 09:59

Please note that terms and conditions apply.

LETTER TO THE EDITOR

An analytic treatment of finite-size corrections in the spin-1 antiferromagnetic $X X Z$ chain

A Klümper \dagger and M T Batchelor \ddagger
\dagger Institut für Theoretische Physik, Universität zu Köln, Zülpicher Straße 77, D-5000 Köln 41, Federal Republic of Germany
\ddagger Centre for Mathematical Analysis, School of Mathematical Sciences, Australian National University, GPO Box 4, Canberra ACT 2601, Australia and
Department of Mathematics, University of Melbourne, Parkville, Victoria 3052, Australia

Received 18 December 1989

Abstract

It is known that the standard method for calculating finite-size corrections in Bethe ansatz solvable systems is not applicable to the Takhtajan-Babujian model and its anisotropic $X X Z$ generalisation. We develop a new analytic method explicitly avoiding root densities and associated problems. Nonlinear integral equations are derived whose solutions yield the correct central charges $c=1$ and $c=\frac{3}{2}$ for the spin- $\frac{1}{2}$ and spin-1 $X X Z$ chains, respectively. In the spin- 1 case we obtain as a by-product the finite-size deviation of the Bethe ansatz roots from the 2 -string formation.

There has been a recent growth of interest in calculating finite-size corrections in exactly solvable two-dimensional statistical mechanics models and their related quantum spin chains. One motivation is that at criticality such corrections are known to characterise an underlying conformal field theory (for a review, see e.g. [1]). In particular, for periodic boundary conditions, the leading finite-size correction to the ground state energy E_{0} of the spin chain is related $[2,3]$ to the central charge c :

$$
\begin{equation*}
E_{0} \sim N e_{0}-\pi \zeta c / 6 N \tag{1}
\end{equation*}
$$

where N is the system size and ζ is a scale factor [4].
For models solvable via the Bethe ansatz, de Vega and Woynarovich have given a systematic procedure for calculating finite-size corrections [5]. This method, based on manipulations of root densities, has since been extended and applied to a number of models to derive c and various scaling dimensions (see e.g. $[6,7]$ and references therein).

On the other hand, for quantum spin chains c can also be obtained from the low-temperature heat capacity [3]. In this way, Affleck obtained the value

$$
\begin{equation*}
c=\frac{3 s}{s+1} \tag{2}
\end{equation*}
$$

for the integrable spin-s Takhtajan-Babujian (TB) model [8,9]. However, the nature of the complex string solutions to the Bethe ansatz equations for E_{0} has so far prevented
a derivation of this result via (1). Nevertheless, the Bethe ansatz equations can still be solved numerically for relatively large N and small values of s [10-13]. In each case the estimates for c are in agreement with (2). More recently de Vega and Woynarovich have succeeded in deriving the finite-size behaviour of the roots [14].

In this letter we develop a different approach for calculating finite-size corrections, explicitly avoiding root densities. Our first goal has been to obtain the result (2) for the TB model. Here we present our results for the spin-1 case. In order to set the notation and for later comparison, we begin with a treatment of the spin- $\frac{1}{2} X X Z$ chain.

The Hamiltonian H of the more general spin-s $X X Z$ chain (the TB model follows from H in the isotropic limit) and the momentum operator P can be expressed in terms of the transfer matrix $T(v)$ of the related ($2 s+1$)-state vertex model (see e.g. [15-16]) as

$$
\begin{equation*}
H=\text { constant } \times(\ln T)^{\prime}\left(v_{0}\right) \quad P=i \ln T\left(v_{0}\right) \tag{3}
\end{equation*}
$$

where v_{0} is a special value of the spectral variable v. The eigenspectrum of H can be obtained in terms of the eigenvalues $\Lambda(v)$ of $T(v)$

$$
\begin{equation*}
E=\text { constant } \times(\ln \Lambda)^{\prime}\left(v_{0}\right) \quad P=\mathrm{i} \ln \Lambda\left(v_{0}\right) . \tag{4}
\end{equation*}
$$

The spin- $\frac{1}{2} X X Z$ chain is related to the six-vertex model (see e.g. [17]). The eigenvalues $\Lambda(v)$ of the corresponding transfer matrix are determined from

$$
\begin{equation*}
\Lambda(v) q(v)=\Phi(v-\mathrm{i} \theta / 2) q(v+\theta \mathrm{i})+\Phi(v+\mathrm{i} \theta / 2) q(v-\theta \mathrm{i}) \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
\Phi(v)=(\sinh v)^{N} \quad q(v)=\prod_{j=1}^{N} \sinh \left(v-v_{j}\right) . \tag{6}
\end{equation*}
$$

Here N is the length of the chain and N_{-}is the number of down spins of the eigenstate. The unknown numbers v_{j} are determined by the Bethe ansatz equations $p\left(v_{j}\right)=-1$ where $p(v)$ is defined by

$$
\begin{equation*}
p(v):=\frac{\Phi(v-\mathrm{i} \theta / 2) q(v+\theta \mathrm{i})}{\Phi(v+\mathrm{i} \theta / 2) q(v-\theta \mathrm{i})} . \tag{7}
\end{equation*}
$$

In the following we restrict ourselves to N even and also assume that $0<\theta<\pi / 2$ which covers a part of the planar $X X Z$ chain in the neighbourhood of the (isotropic) antiferromagnetic Heisenberg model. The functions $q(v), \Phi(v)$ and $\Lambda(v)$ are π i periodic:
$q(v+\pi \mathrm{i})=(-1)^{N / 2} q(v) \quad \Phi(v+\pi \mathrm{i})=\Phi(v) \quad \Lambda(v+\pi \mathrm{i})=\Lambda(v)$.
The ground state is characterised by $N_{-}=N / 2$ real numbers v_{j} distributed symmetrically about 0 . We define functions $Q(v)$ and $P(v)$ as

$$
\begin{align*}
& Q(v):=(2 \mathrm{i})^{-N / 2} q(v)\left\{\cosh \left[\frac{1}{2}\left(v-\frac{\pi}{2} \mathrm{i}\right)\right]\right\}^{N} \\
& P(v):=\left\{\operatorname{coth}\left[\frac{\pi}{2 \theta}\left(v-\frac{\theta}{2} \mathrm{i}\right)\right]\right\}^{N} p(v) \tag{9}
\end{align*}
$$

which are analytic, non-zero on the following strips and have zero logarithm in the far left/right limit (ANZZ)

$$
\begin{array}{rll}
0<\operatorname{Im}(v)<\pi & \text { for } & Q(v) \tag{10}\\
-\theta<\operatorname{Im}(v)<\theta & \text { for } & P(v) .
\end{array}
$$

Due to the ANZZ property $\ln Q(v), \ln P(v)$ can be Fourier transformed, e.g.

$$
\begin{equation*}
\ln Q(v)=\int_{-\infty}^{\infty} \hat{Q}(k) \mathrm{e}^{\mathrm{i} k v} \mathrm{~d} k \tag{11}
\end{equation*}
$$

with inverse transform

$$
\begin{equation*}
\hat{Q}(k)=\frac{1}{2 \pi} \int_{-\infty+r \mathrm{i}}^{\infty+r \mathrm{i}} \ln Q(v) \mathrm{e}^{-i k v} \mathrm{~d} v \tag{12}
\end{equation*}
$$

where r is somewhere between 0 and π.
From (7) and (8) we derive the first relation

$$
\begin{align*}
& \hat{P}(k)+\left(\mathrm{e}^{-(\pi-\theta) k}-\mathrm{e}^{-\theta k}\right) \hat{Q}(k) \\
&= \frac{1}{2 \pi} \int_{-\infty}^{\infty} \ln \left\{\mathrm{i} \operatorname{coth}\left[\frac{\pi}{2 \theta}\left(v-\frac{\theta}{2} \mathrm{i}\right)\right] \frac{\sinh (v-\mathrm{i} \theta / 2)}{\sinh (v+\mathrm{i} \theta / 2)}\right. \\
&\left.\times \frac{\cosh [(v+\mathrm{i} \theta-\mathrm{i} \pi / 2) / 2]}{\cosh [(v+\mathrm{i} \pi / 2-\mathrm{i} \theta) / 2]}\right\}^{N} \mathrm{e}^{-\mathrm{i} k v} \mathrm{~d} v . \tag{13}
\end{align*}
$$

A second relation is derived from the fact that $h(v):=(1+p(v)) / 2 Q(v)$ is ANZZ in $-\theta<\operatorname{Im}(v)<\theta$. Cauchy's theorem then guarantees that

$$
\begin{equation*}
\int_{-\infty+a \mathrm{i}}^{\infty+a \mathrm{i}} \ln h(v) \mathrm{e}^{-\mathrm{i} k v} \mathrm{~d} v=\int_{-\infty+b \mathrm{i}}^{\infty+b \mathrm{i}} \ln h(v) \mathrm{e}^{-\mathrm{i} k v} \mathrm{~d} v \tag{14}
\end{equation*}
$$

where $-\theta<b<0<a<\theta$. Using (8) this last equation is equivalent to

$$
\begin{align*}
& \hat{P}(k)+\left(1-\mathrm{e}^{-\pi k}\right) \hat{Q}(k) \\
&= \frac{1}{2 \pi} \int_{-\infty+a \mathrm{i}}^{\infty+a \mathrm{i}} \ln \frac{1+p(v)}{2} \mathrm{e}^{-\mathrm{i} k v} \mathrm{~d} v-\frac{1}{2 \pi} \int_{-\infty+b \mathrm{i}}^{\infty+b \mathrm{i}} \ln \frac{1+1 / p(v)}{2} \mathrm{e}^{-\mathrm{i} k v} \mathrm{~d} v \\
&-\frac{1}{2 \pi} \int_{-\infty+b \mathrm{i}}^{\infty+b \mathrm{i}} \ln \left\{\mathrm{i} \tanh \left[\frac{\pi}{2 \theta}\left(v-\frac{\theta}{2} \mathrm{i}\right)\right] \frac{\cosh [(v-\mathrm{i} \pi / 2) / 2]}{\cosh [(v+\mathrm{i} \pi / 2) / 2]}\right\}^{N} \mathrm{e}^{-\mathrm{i} k v} \mathrm{~d} v . \tag{15}
\end{align*}
$$

From (13) and (15) the functions $\hat{Q}(k)$ and $\hat{P}(k)$ can be determined in terms of $p(v)$. From $\hat{P}(k)$ we calculate $P(v)$ using $p(-v)=1 / p(v)$, with the result

$$
\begin{equation*}
\ln P(v)=\frac{1}{2 \pi} \int_{-\infty+b \mathrm{i}}^{\infty+b \mathrm{i}} \ln \frac{1+1 / p(w)}{2}(F(v+w)-F(v-w)) \mathrm{d} w \tag{16}
\end{equation*}
$$

where

$$
\begin{equation*}
F(v):=\int_{-\infty}^{\infty} \frac{\sinh (\pi-2 \theta) k}{\cosh \theta k \sinh (\pi-\theta) k} \mathrm{e}^{\mathrm{i} 2 k v} \mathrm{~d} k \tag{17}
\end{equation*}
$$

Choosing $b=-\theta / 2$ and respecting the pole of $F(v)$ at $v=-\theta \mathrm{i}$ we find

$$
\begin{equation*}
P(v-\mathrm{i} \theta / 2)=\exp \left(\frac{1}{2} R(v)^{*}+\frac{1}{2 \pi} \int_{-\infty+b \mathrm{i}}^{\infty+b \mathrm{i}}\left(R(v-w)^{*} F(w-\mathrm{i} \theta)-R(v-w) F(w)\right) \mathrm{d} w\right) \tag{18}
\end{equation*}
$$

where we have used the abbreviation

$$
R(v):=\ln \frac{1+1 / p(v-\mathrm{i} \theta / 2)}{2}=\ln \frac{1+[\tanh (\pi v / 2 \theta)]^{N} / P(v-\mathrm{i} \theta / 2)}{2}
$$

This is a nonlinear integral equation for $P(v)$ where N enters simply as a (real) parameter but no longer plays the role of the number of unknown variables.

The ground state energy of the spin- $\frac{1}{2} X X Z$ chain is calculated from

$$
\begin{equation*}
E_{0}=-\mathrm{i}(\theta / \pi)(\ln \Lambda)^{\prime}(-\mathrm{i} \theta / 2) \tag{19}
\end{equation*}
$$

where an appropriate normalisation factor [18] was introduced to render the sound velocity as $\zeta=1$. Now writing $E_{0}=N e_{0}+\Delta E_{N}$, the finite-size correction ΔE_{N} can be expressed in terms of $p(v)$:

$$
\begin{equation*}
\Delta E_{N}=-\frac{2}{\pi} \int_{0}^{\infty} \frac{(\operatorname{Re} R(v))^{\prime}}{\sinh (\pi v / \theta)} \mathrm{d} v \tag{20}
\end{equation*}
$$

To find a closed-form expression for the central charge c via (1), we introduce a new variable x by

$$
\begin{equation*}
v=\frac{2 \theta}{\pi}\left(\frac{1}{2} \ln N+x\right) \tag{21}
\end{equation*}
$$

and the limiting functions

$$
\begin{align*}
& \alpha(x):=\lim _{N \rightarrow \infty} P(v-\mathrm{i} \theta / 2) \\
& \gamma(x):=\lim _{N \rightarrow \infty} R(v)=\ln \frac{1+\exp [-2 \exp (-2 x)] / \alpha(x)}{2} \tag{22}
\end{align*}
$$

Equations (18), (21) and (22) then yield an integral equation for $\alpha(x)$,

$$
\begin{align*}
\alpha(x)=\exp \left\{\frac{1}{2} \gamma(x)^{*}+\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left[\gamma(x-y)^{*} F\left(\frac{2 \theta}{\pi} y-\theta \mathrm{i}\right) \frac{2 \theta}{\pi}\right.\right. \\
\left.\left.-\gamma(x-y) F\left(\frac{2 \theta}{\pi} y\right) \frac{2 \theta}{\pi}\right] \mathrm{~d} y\right\} \tag{23}
\end{align*}
$$

The central charge can be calculated from the solution $\alpha(x)$ after performing the appropriate limit in (20). We find

$$
\begin{equation*}
c=\frac{48}{\pi^{2}} \int_{-\infty}^{\infty} \operatorname{Re}(\gamma(x)+\ln 2) \mathrm{e}^{-2 x} \mathrm{~d} x \tag{24}
\end{equation*}
$$

Up to now we have not solved (23) analytically. The solution, however, can be found numerically by iteration. This yields the known value of $c=1$ within an error of order 10^{-6}.

Our alternative method for the spin- $\frac{1}{2} X X Z$ chain may look rather complicated. However, one should take into consideration that even for spin- $\frac{1}{2}$, a thorough treatment of the finite-size corrections within the standard method is still involved [6]. By inspection, we have $\lim _{x \rightarrow \pm \infty} \alpha(x)=1$ as the asymptotic behaviour of $\alpha(x)$. Here the crude approximation $\alpha(x) \equiv 1$, corresponding to Hamer's procedure [18], does not solve (23), but fortunately (24) gives $c=1$. (A comparable approximation for the spin- 1 chain below does not work.)

We turn now to the spin-1 antiferromagnetic $X X Z$ chain, i.e. to the model of Zamolodchikov and Fateev [19]. Here the eigenvalues of the transfer matrix of the corresponding 19 -vertex model are given by $[15,16]$

$$
\begin{equation*}
\Lambda(v)=L(v) L(v+\theta \mathrm{i})-\sinh (v-\theta \mathrm{i})^{N} \sinh (v+2 \theta \mathrm{i})^{N} \tag{25}
\end{equation*}
$$

and

$$
\begin{equation*}
L(v) q(v)=\Phi(v-\theta \mathrm{i}) q(v+\theta \mathrm{i})+\Phi(v+\theta \mathrm{i}) q(v-\theta \mathrm{i}) \tag{26}
\end{equation*}
$$

where $q(v)$ and $\Phi(v)$ are as defined in (6). The numbers v_{j} are determined by the Bethe ansatz equations $p\left(v_{j}\right)=-1$ where $p(v)$ is now defined by

$$
\begin{equation*}
p(v):=\frac{\Phi(v-\theta \mathrm{i}) q(v+\theta \mathrm{i})}{\Phi(v+\theta \mathrm{i}) q(v-\theta \mathrm{i})} \tag{27}
\end{equation*}
$$

For the ground state, the $N_{-}=N$ roots v_{j} are distributed symmetrically about 0 and are close to the lines $\operatorname{Im}(v)= \pm \theta / 2$, but do not lie on them exactly. We assume N even and $0<\theta<\pi / 3$.

In order to proceed, we define some functions $Q_{1}(v), Q_{2}(v), P_{1}(v)$ and $P_{2}(v)$ for which the strips of the complex plane where the ANZZ property holds are

$$
\begin{array}{ll}
Q_{1}(v):=\frac{q(v)}{(\sinh v)^{N}} & -\pi+\theta / 2<\operatorname{Im}(v)<-\theta / 2 \\
Q_{2}(v):=\frac{q(v)}{(\cosh v)^{N}} & -\theta / 2<\operatorname{Im}(v)<\theta / 2 \\
P_{1}(v):=\left[\operatorname{coth}\left(\frac{\pi}{2 \theta} v\right)\right]^{N} p(v) & -3 \theta / 2<\operatorname{Im}(v)<-\theta / 2 \tag{28}\\
P_{2}(v):=p(v) & -\theta / 2<\operatorname{Im}(v)<\theta / 2
\end{array}
$$

On similar lines as above using the ANZZ property of $h_{1}(v):=(1+p(v)) / 2 Q_{2}(v)$ and $h_{2}(v):=(1+p(v)) Q_{2}(v-\theta \mathrm{i}) / 2 Q_{1}(v)$ in $-\theta<\operatorname{Im}(v)<0$ and $0<\operatorname{Im}(v)<\theta$,
respectively, four equations can be derived for $\hat{Q}_{1}(k), \hat{Q}_{2}(k), \hat{P}_{1}(k)$ and $\hat{P}_{2}(k)$. They finally yield two coupled nonlinear integral equations for $P_{1}(v)$ and $P_{2}(v)$:

$$
\begin{align*}
P_{1}(v-\theta \mathrm{i})= & \left(\frac{R_{2}(v)}{R_{1}(v) P_{2}(v)}\right)^{1 / 2} \exp \left[\mathrm{i} \int_{-\infty}^{\infty} \frac{R(v-w)}{2 \theta \sinh \pi w / \theta} \mathrm{d} w\right. \\
& \left.+\frac{\mathrm{i}}{2(\pi-2 \theta)} \int_{-\infty}^{\infty} \ln P_{2}(v-w)\left(\operatorname{coth} \frac{\pi w}{\pi-2 \theta}+\operatorname{coth} \frac{\pi(\theta \mathrm{i}-w)}{\pi-2 \theta}\right) \mathrm{d} w\right] \tag{29}
\end{align*}
$$

$$
P_{2}(v)=\frac{R_{1}(-v)}{R_{1}(v)} \exp \left(\mathrm{i} X_{-\infty}^{\infty} \frac{R(v-w)+R(w-v)}{\theta \sinh \pi w / \theta} \mathrm{d} w\right)
$$

where

$$
\begin{align*}
R_{1}(v) & :=1+[\tanh (\pi v / 2 \theta)]^{N} / P_{1}(v-\theta \mathrm{i}) \quad R_{2}(v):=1+P_{2}(v) \\
R(v) & :=\ln \left(\frac{R_{1}(v)}{2} \frac{R_{2}(v)}{2}\right) . \tag{30}
\end{align*}
$$

The ground state energy of the spin- $1 X X Z$ chain is calculated from

$$
\begin{equation*}
E_{0}=-\mathrm{i}(\theta / \pi)(\ln \Lambda)^{\prime}(-\theta \mathrm{i})=N e_{0}-\mathrm{i}(\theta / \pi)\left(\ln P_{2}\right)^{\prime}(0) . \tag{31}
\end{equation*}
$$

We introduce the variable x as in (21) and the limiting functions

$$
\begin{align*}
& \alpha(x):=\lim _{N \rightarrow \infty} P_{1}(v-\theta \mathrm{i}) \quad \beta(x):=\lim _{N \rightarrow \infty} P_{2}(v) \\
& \gamma(x):=\lim _{N \rightarrow \infty} R(v)=\ln \left(\frac{1+\exp [-2 \exp (-2 x)] / \alpha(x)}{2} \frac{1+\beta(x)}{2}\right) . \tag{32}
\end{align*}
$$

Then in this limit (29) and (32) yield

$$
\begin{align*}
& \alpha(x)=\left(\frac{1+1 / \beta(x)}{1+\exp [-2 \exp (-2 x)] / \alpha(x)}\right)^{1 / 2} \exp \left[\frac{\mathrm{i}}{\pi} \int_{-\infty}^{\infty} \frac{\gamma(x-y)}{\sinh 2 y} \mathrm{~d} y\right. \\
& \quad+\frac{\theta \mathrm{i}}{\pi(\pi-2 \theta)} \int_{-\infty}^{\infty} \ln \beta(x-y)\left(\operatorname{coth} \frac{\theta}{\pi-2 \theta} 2 y\right. \\
& \left.\left.\quad+\operatorname{coth} \frac{\theta}{\pi-2 \theta}(\pi \mathrm{i}-2 y)\right) \mathrm{d} y\right] \tag{33}\\
& \beta(x)=\frac{1+\exp [-2 \exp (-2 x)] / \alpha(x)^{*}}{1+\exp [-2 \exp (-2 x)] / \alpha(x)} \exp \left(\frac{4 \mathrm{i}}{\pi} \int_{-\infty}^{\infty} \frac{\operatorname{Re} \gamma(x-y)}{\sinh 2 y} \mathrm{~d} y\right)
\end{align*}
$$

The solution of these integral equations gives the central charge as

$$
\begin{equation*}
c=\frac{96}{\pi^{2}} \int_{-\infty}^{\infty} \operatorname{Re}(\gamma(x)+\ln 2) \mathrm{e}^{-2 x} \mathrm{~d} x . \tag{34}
\end{equation*}
$$

We have not yet solved (33) analytically. The limiting behaviour, however,

$$
\lim _{x \rightarrow \pm \infty} \alpha(x)=\left\{\begin{array}{l}
1 \tag{35}\\
\sqrt{2}
\end{array} \quad \lim _{x \rightarrow \pm \infty} \beta(x)=\left\{\begin{array}{l}
1 \\
1
\end{array}\right.\right.
$$

is derived easily. From this the deviation of the Bethe ansatz roots v_{j} from the lines $\operatorname{Im}(v)= \pm \theta / 2$ can be derived as

$$
\begin{equation*}
\Delta v_{j}= \pm \frac{\ln 2}{4 \pi} \frac{\mathrm{i}}{N \sigma(v)} \tag{36}
\end{equation*}
$$

where $\sigma(v)$ is the root density. This result is in agreement with the findings of [14].
The integral equations (33) can be solved numerically by iteration. In this way we have obtained the result $c=\frac{3}{2}$ for $\theta=0,0.1 \pi, \pi / 6,0.2 \pi$ and 0.3π with an error of order 10^{-6}. In fact the spin-1 result is expected to hold in the wider range $0<\theta<\pi / 2$ [20], as is borne out by the numerical results [21,22]. A detailed derivation of our results, along with their extension to spin-s, will be published elsewhere.

This work was begun while one of the authors (AK) was a visitor at the Centre for Mathematical Analysis. He thanks the Centre for financial support during his stay and the Deutsche Forschungsgemeinschaft for a travel grant. The work of MTB has been supported by the Australian Research Council.

References

[1] Cardy J L 1987 Phase Transitions and Critical Phenomena vol 11, ed C Domb and J L Lebowitz (New York: Academic)
[2] Blöte H W J, Cardy J L and Nightingale M P 1986 Phys. Rev. Lett. 56742
[3] Affleck I 1986 Phys. Rev. Lett. 56746
[4] von Gehlen G, Rittenberg V and Ruegg H 1986 J. Phys. A: Math. Gen. 19107
[5] de Vega H J and Woynarovich F 1985 Nucl. Phys. B 251439
[6] Karowski M 1988 Nucl. Phys. B 300473
[7] de Vega H J 1989 Int. J. Mod. Phys. A 42371
[8] Takhtajan L A 1982 Phys. Lett. 87 A 479
[9] Babujian H M 1983 Nucl. Phys. B 215317
[10] Avdeev L V and Dörfel B-D 1987 Theor. Math. Phys. 71528
[11] Alcaraz F C and Martins M J 1988 J. Phys. A: Math. Gen. 214397
[12] Affleck I, Gepner D, Schulz H J and Ziman T 1989 J. Phys. A: Math. Gen. 22511
[13] Dörfel B-D 1989 J. Phys. A: Math. Gen. 22 L657
[14] de Vega H J and Woynarovich F 1989 Preprint PAR-LPTHE 89-32
[15] Kirillov A N and Reshetikhin N Yu 1985 Zap. Nauch. Sem. LOMI 145109 - 1986 J. Sov. Math. 352627
[16] Kirillov A N and Reshetikhin N Yu 1987 J. Phys. A: Math. Gen. 201565
[17] Baxter R J 1982 Exactly Solved Models in Statistical Mechanics (London: Academic)
[18] Hamer C J 1986 J. Phys. A: Math. Gen. 193335
[19] Zamolodchikov A B and Fateev V 1980 Yad. Fiz. 32581

- 1980 Sov. J. Nucl. Phys. 32298
[20] Johannesson H 1988 J. Phys. A: Math. Gen. 21 L611, L1157
[21] Alcaraz F C and Martins M J 1989 J. Phys. A: Math. Gen. 221829
[22] Frahm H, Yu N-C and Fowler M 1989 Preprint

