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Abstract. It is known that the standard method for calculating finite-size correc-
tions in Bethe ansatz solvable systems is not applicable to the Takhtajan-Babujian
model and its anisotropic X X Z generalisation. We develop a new analytic method
explicitly avoiding root densities and associated problems. Nonlinear integral equa-

tions are derived whose solutions yield the correct central charges c = 1 and ¢ = %

for the spin-% and spin-1 XX Z chains, respectively. In the spin-1 case we obtain
as a by-product the finite-size deviation of the Bethe ansatz roots from the 2-string
formation.

There has been a recent growth of interest in calculating finite-size corrections in ex-
actly solvable two-dimensional statistical mechanics models and their related quantum
spin chains. One motivation is that at criticality such corrections are known to char-
acterise an underlying conformal field theory (for a review, see e.g. [1]). In particular,
for periodic boundary conditions, the leading finite-size correction to the ground state
energy E, of the spin chain is related [2,3] to the central charge c:

Ey~ Ney — m(c/6N (1)

where N is the system size and ( is a scale factor [4].

For models solvable via the Bethe ansatz, de Vega and Woynarovich have given
a systematic procedure for calculating finite-size corrections [5]. This method, based
on manipulations of root densities, has since been extended and applied to a number
of models to derive ¢ and various scaling dimensions (see e.g. [6,7] and references
therein).

On the other hand, for quantum spin chains ¢ can also be obtained from the
low-temperature heat capacity [3]. In this way, Affleck obtained the value

3s
== (2)

for the integrable spin-s Takhtajan-Babujian (TB) model [8,9]. However, the nature of
the complex string solutions to the Bethe ansatz equations for E has so far prevented
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a derivation of this result via (1). Nevertheless, the Bethe ansatz equations can still
be solved numerically for relatively large N and small values of s [10-13]. In each case
the estimates for ¢ are in agreement with (2). More recently de Vega and Woynarovich
have succeeded in deriving the finite-size behaviour of the roots [14].

In this letter we develop a different approach for calculating finite-size corrections,
explicitly avoiding root densities. Qur first goal has been to obtain the result (2) for
the TB model. Here we present our results for the spin-1 case. In order to set the
notation and for later comparison, we begin with a treatment of the spin—% XX7Z
chain.

The Hamiltonian H of the more general spin-s X X Z chain (the TB model follows
from H in the isotropic limit) and the momentum operator P can be expressed in

terms of the transfer matrix T'(v) of the related (2s + 1)-state vertex model (see e.g.
[15-16]) as

H = constant x (InT)'(vg) P =ilnT(v,) (3)

where v, is a special value of the spectral variable v. The eigenspectrum of H can be
obtained in terms of the eigenvalues A(v) of T'(v)

E = constant x (InA)(v,) P =iln A(v). (4)

The spin-§ XX Z chain is related to the six-vertex model (see e.g. [17]). The eigen-
values A(v) of the corresponding transfer matrix are determined from

Av)g(v) = ®(v — 16/2)g(v + 6) + B(v + i6/2)q(v — 6i) (5)
where
N.
®(v) = (sinhv)™ g(v) = [[sinh(v - v)). (6)
j=1

Here N is the length of the chain and N_ is the number of down spins of the eigenstate.
The unknown numbers v; are determined by the Bethe ansatz equations p(v;) = —1
where p(v) is defined by

_ (v —1i0/2)q(v + 6i)
PO) = B T 16/Da(o — ) @

In the following we restrict ourselves to N even and also assume that 0 < 6 < 7/2
which covers a part of the planar X X Z chain in the neighbourhood of the (isotropic)
antiferromagnetic Heisenberg model. The functions ¢{v), ®(v) and A(v) are 7i peri-
odic:

g(v + 7i) = (=1)M?%q(v) O(v + 7i) = ®(v) A(v + 7i) = A(v). (8)

The ground state is characterised by N_ = N/2 real numbers v; distributed symmet-
rically about 0. We define functions @(v) and P(v) as

Q) = (22w {eosh [ (o 1) }N

P(v) := {coth [% (v - glﬂ }Np(’u)
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which are analytic, non-gero on the following strips and have zero logarithm in the far
left /right limit (ANZZ)

0<Im(w)<n for Q(v)

(10)
-0 <Im(v)<¥6 for P(v).
Due to the ANZZ property In Q(v), In P(v) can be Fourier transformed, e.g.
o N .
InQ(v) = / Q(k)e'™ dk (11)
with inverse transform
R 1 oco+4ri .
Qk) = — In Q(v)e™*¥ dv (12)
27 —004ri
where r is somewhere between 0 and 7.
From (7) and (8) we derive the first relation
P(k) + (&9 — =#)Q(k)
1 [ : T 6 .\ ] sinh(v — i6/2)
=) 1“{‘“’“’ [29 (“ ~3 ‘)] sinh(o +16/2)
cosh[(v +10 — in/2)/21\ N _ire
X oshlw a2 ¢ o (13)

A second relation is derived from the fact that h(v) := (1 + p(v))/2Q(v) is ANZZ in
—8 < Im(v) < 8. Cauchy’s theorem then guarantees that

co+ai ) oo +bi i
/ In h(v)e~** dy = / Inh(v)e=* dv (14)
~co+ai —oo+bi

where —8 < b < 0 < a < . Using (8) this last equation is equivalent to

P(k) + (1= e™™)Q(k)
oo +ai ) oo+bi )
! In 1+ p(v) e—llcu dv - 1 / In 1+ 1/p(v)e—1ku dv

2m —oo+ai 2 27 ~oo+bi 2

1 footh n 6 cosh[(v — ir/2)/2\ "N _;
. Indi i s ~ikv

27 J_oorhi n{ltanh [20 (v 2 1)} cosh(v + i7r/2)/2]} € dv.

(15)

From (13) and (15) the functions Q(k) and P(k) can be determined in terms of
p(v). From P(k) we calculate P(v) using p(—v) = 1/p(v), with the result

oo +bi
InP(v) = -2% /: - In -l—i—%M(F(v +w) — F(v - w))dw (16)
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where

®  sinh(m — 20)k i2kv
= ! . 1
F(v) /_ _ cosh Ok sinb(r — @)k ¢ 9F (17)

Choosing b = —f/2 and respecting the pole of F(v) at v = —8i we find
1 00 +bi

P(v-i8/2) = exp <%R(v)' +

5 —m+bi(R(v - w)' F{w —10) — R(v — w)F(w)) dw)

(18)
where we have used the abbreviation

1+1/p(v—i6/2) _ Lt [tanh(mv/28))Y /P(v —i8/2) ‘

R(v):=1In 5 5

This is a nonlinear integral equation for P(v) where N enters simply as a (real)
parameter but no longer plays the role of the number of unknown variables.
The ground state energy of the spm— X X Z chain is calculated from

Ey = —i(8/m)(In A)'(~i6/2) (19)

where an appropriate normalisation factor [18] was introduced to render the sound
velocity as ( = 1. Now writing £, = Ney + AE,, the finite-size correction AEy can
be expressed in terms of p(v):

2 (Re R(v

ALy = smh 7rv/6

(20)

To find a closed-form expression for the central charge ¢ via (1), we introduce a new
variable z by

v_2:( lnN+:c) (21)

and the limiting functions

o4
—~
8
~——
]

lim P(v—16/2)

N—oo

(22)

o 1+ exp[-2exp(—2z)]/a(z)
¥(z) = Nll_rg() R(v) =In 5 .

Equations (18), (21) and (22) then yield an integral equation for o(z)

-0

— 4z - yF (Qf ) Q—f—] dy}. (23)

k)
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The central charge can be calculated from the solution e(z) after performing the
appropriate limit in (20). We find

48 = -2z
c=— Re(y(z) + In2)e™*" dz. (24)
-0

Up to now we have not solved (23) analytically. The solution, however, can be found
numerically by iteration. This yields the known value of ¢ = 1 within an error of order
10-S.

Our alternative method for the spin—% X XZ chain may look rather complicated.
However, one should take into consideration that even for spin—%, a thorough treatment
of the finite-size corrections within the standard method is still involved [6]. By
inspection, we have lim,_ ., a(z) = 1 as the asymptotic behaviour of a(z). Here
the crude approximation a(z) = 1, corresponding to Hamer’s procedure [18], does not
solve (23), but fortunately (24) gives ¢ = 1. (A comparable approximation for the
spin-1 chain below does not work.)

We turn now to the spin-1 antiferromagnetic X X Z chain, i.e. to the model of
Zamolodchikov and Fateev [19]. Here the eigenvalues of the transfer matrix of the
corresponding 19-vertex model are given by [15,16]

A(v) = L(v)L(v + 8i) — sinh(v — 6i)" sinh(v + 26i)" (25)
and
L(v)q(v) = ®(v — 0i)g(v + 6i) + (v + i)g(v — 61) (26)

where ¢(v) and ®(v) are as defined in (6). The numbers v; are determined by the
Bethe ansatz equations p(v;) = —1 where p(v) is now defined by

_ ®(v —0i)g(v + 6i)
) = BT Bi)g(o — 1)

(27)

For the ground state, the N_ = N roots v; are distributed symmetrically about 0 and
are close to the lines Im (v) = £6/2, but do not lie on them exactly. We assume N
evenand 0 < 4 < 7/3.

In order to proceed, we define some functions Q,(v), @,(v), P,(v) and P,(v) for
which the strips of the complex plane where the ANZZ property holds are

Q:(v) :=(—si_;% —-1+4+60/2<Im(v) < —6/2
Q@2(v) :=(c_oz%);)w —-6/2<Im(v)<6/2
x \qN (28)
P(v):= [coth (%v)] p(v)  —38/2 <Im(v) < —6/2
Py(v) := p(v) -8/2<Im(v) < 6/2.

On similar lines as above using the ANZZ property of h,(v) := (1 + p(v))/2Q4(v)
and hy(v) := (1 + p(v))Qy(v — 61)/2Q,(v) in =9 < Im(v) < 0 and 0 < Im(v) < 6,
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respectively, four equations can be derived for @,(k), Q,(k), P,(k) and P,(k). They
finally yield two coupled nonlinear integral equations for P,(v) and P,(v):

oo (R NPT R -w)
N o R - T

i & w 7r(9i—w))
— - —_ ] d
+2(7r_20)/:°°lnP2(v w)(cothw_20+coth %0 w

(29)

Py(v) = ___Réf(j;) exp (i B R(v ;gﬁ:ﬁﬁ(;; —v) dw)

where

R(v) := 1+ [tanh (zv/26)}" /P, (v - 6i) R,(v) := 1+ Py(v)

R(v):=1In <w E%Q) . (30)

The ground state energy of the spin-1 XX Z chain is calculated from

Ey = —i(8/7)(In A) (—6i) = Ney — i(6/7)(In P,)(0). (31)
We introduce the variable z as in (21) and the limiting functions
aim Py(v—6i)  B(z):= lim Py(v)

1 + exp[-2exp(—2z)]/a(z) 1 + ﬂ(x))
2 2 .

a(z):

v(z) := lim R(v):ln(

N—ooo

Then in this limit (29) and (32) yield

_ 1+1/4(z) VIO (e —y)
olz) = (1+exp[—2exp(—2z>1/a<z)) ‘”‘p[F [

6i *© g
+ _——_w(n'—%) /_w lnﬁ(z—y)(coth 1r—26’2y

+ coth W_” (i 2y)) dy} (33)

_ 1+ exp[—2exp(=2z)]/a(z)" 4 [* Rey(z-y)
Ala) = 1 + exp[~2exp(—2z)}/a(z) ox <1r —o sinh2y d)

The solution of these integral equations gives the central charge as

c= 2%/ Re (v(2) + In2)e~2 dz. (34)
T Jeoo

We have not yet solved (33) analytically. The limiting behaviour, however

b

z—l-ig;noo a(z) = { ]\;/i z-l-il:’i:noo ,3(1:) = { i (35)
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is derived easily. From this the deviation of the Bethe ansatz roots v; from the lines
Im (v) = £6/2 can be derived as

In2 i

Avj = 2 Ne()

=4 (36)

J

where o(v) is the root density. This result is in agreement with the findings of [14].

The integral equations (33) can be solved numerically by iteration. In this way we
have obtained the result ¢ = % for¢ = 0,0.1n, #/6, 0.27 and 0.3« with an error of order
10~8. In fact the spin-1 result is expected to hold in the wider range 0 < 8 < 7/2 [20],
as is borne out by the numerical results {21,22]. A detailed derivation of our results,
along with their extension to spin-s, will be published elsewhere.

This work was begun while one of the authors (AK) was a visitor at the Centre for
Mathematical Analysis. He thanks the Centre for financial support during his stay
and the Deutsche Forschungsgemeinschaft for a travel grant. The work of MTB has
been supported by the Australian Research Council.
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